

t.CFD - Computational Fluid Dynamics (Numerische Strömungssimulation)

Person responsible for the course:	r Egon Lang, lang					
Responsible OU:						
ECTS:	4					
Valid for:	2012/2013					
Last saved:	29.05.2013 12:59					
Expertise:						
Methodological skills: -						
Social skills:						
-						
Personal skills:						
-						

Learning objectives:

The students:

- know the benefits and limitations of numerical simulations
- know how to evaluate simulation results critically
- can apply a systematic approach to simulate fluid flow problems
- can carry out numerical simulations of simple fluid flow problems

Course content:

Lecture:

- Generation of geometric models with the CAD software CATIA
- Generation of grids of various types
- Setting up a simulation (preprocessing) perfoming a simulation (solver)
- Evaluating the results of a simulation (postprocessing) with ANSYS CFX 10
- Interpretation and discussion of the results
- Introduction to the theory of computational fluid dynamics (finite volumes method)

Practical applications:

- Calculation of the fluid flow through a elbow
- Simulation of a simple mixing process
- Simulation of the flow around an airfoil or hydrofoil, computation of the lift and the drag force
- Calculation of the flow and the heat transfer in a pipe
- Simulation of small problem chosen by the students themselves

Previous knowledge:

- Basics of fluid mechanics (aerodynamics) and thermodynamics
- Knowledge of differential equations

Teaching method:				
Type of lesson:	Number of lessons per week:			
Lecture	14*4			
Tutorial/Practicum				
Block instruction				

Assessment:

According to the table or as specified in writing by the lecture at the beginning of the semester!

description	type	form	scope	assessment	weighting
	Report and Presentation	Written / orally			
Semester end exam					

Language of instruction:

English

Instruction material:

Additional literature:

Comments:

The infrastructure required for this course limits the number of participants to a maximum of 20. Should there be more than 20 participants, the course has to be held in more than one class. Students in Aviation receive a brief introduction to CATIA to ensure that they are capable of producing geometric models.