t.PRTMV1 - Prozesstechnik MV 1

Kursverantwortung: Thomas Spielmann, spta

Credits: 3

Schuljahr: 2010/2011

Zuletzt gespeichert: 04.08.2010 13:38

Lernziel:

- einfache Prozesse modellieren und mit Berkeley Madonna simulieren
- sicherheitsrelevante Massnahmen ergreifen
- sichere Prozessführung aufgrund kalorischer Daten oder Berechnungen gewährleisten
- technische Reaktoren kennen, grob dimensionieren und einschätzen
- Masstabvergrösserungen berechnen
- Bioreaktoren und Umgang mit ihnen kennen
- Grundlagen der Steriltechnik kennen und anwenden

Lerninhalt:

- Modellbildung zu Verweilzeitverteilungen sowie Stoff- und Wärmeaustausch, anschliessend Computer-Simulation mit Berkeley Madonna
- Sicherheitsabklärungen und massnahmen
- Einteilung und Betriebsweise von Reaktoren
- Grobe Dimensionierung von Reaktoren
- Massstabvergrösserungen
- Bioreaktoren
- Steriltechnik

Vorkenntnisse:

-

Durchführung:

Unterrichtsart	Anzahl Lektionen pro Woche
Vorlesung	14x2L
Übung/Praktika	14x1L
Gruppenunterricht	
Blockunterricht	
Seminar	

Leistungsnachweise:

Laut Tabelle oder gemäss schriftlicher Festlegung des Dozierenden zu Semesterbeginn!

Anzahl	Art	Gewichtung
1	Modulendprüfung	
	Prüfungen während der Unterrichtszeit	
1	Praktikumsbericht	

Unterrichtssprache:

-

Unterrichtsunterlagen:

Skript, Übungsaufgaben

- W. L. McCabe, W. L. Smith, P. Harriott, Unit Operations of Chemical Engineering, McGraw Hill, 2001
- R. H. Perry, D. Green, Perry-s Chemical Engineers- Handbook, 7th ed., McGraw Hill, 1997
- J.Ingham, I. J.Dunn, E. Heinzle, J. E. Prenosil, Chemical Engineering Dynamics; Wiley, Weinheim 2000

Bemerkungen:

-