t.MFL2 - Mechanik Festigkeitslehre 2

Kursverantwortung: Jürg Meier, mrjg

Credits: 3

Schuljahr: 2010/2011

Zuletzt gespeichert: 16.12.2010 11:37

Lernziel:

- kann einfache Bauteile mit ANSYS Workbench berechnen
- Beherrscht die Bestimmung von Torsionsspannungen und Verdrehwinkeln an zylindrischen und nicht kreisförmigen Querschnitten
- Kann einfache Bauteile bei einem allgemeinem Spannungszustand berechnen
- Kennt die gängigen Festigkeitshypothesen
- Kann einfache Knickanalysen durchführen

Lerninhalt:

- Kurzeinführung in FEM Berechnung mit ANSYS Workbench
- Schubspannung, Abscheren, Formänderung bei Schub, Schubspannungen bei Biegung
- Torsionspannungen / Verdrehwinkel bei zylindrischen Querschnitten
- Torsionspannungen / Verdrehwinkel bei nicht zylindrischen Querschnitten
- Mehrachsige Spannungszustände
- Festigkeitshypothesen
- Knickung

Vorkenntnisse:

t.MFL1

Durchführung:

Unterrichtsart	Anzahl Lektionen pro Woche	
Vorlesung	12x3L	
Übung/Praktika		
Gruppenunterricht	3X2L (FEM Kurzeinführung)	
Blockunterricht		
Seminar		

Leistungsnachweise:

Laut Tabelle oder gemäss schriftlicher Festlegung des Dozierenden zu Semesterbeginn!

Anzahl	Art	Gewichtung
1	Modulendprüfung	60%
2	Prüfung während Unterrichtszeit	je 20%
	Weitere Leistungsnachweise	

Unterrichtssprache:

Deutsch

Unterrichtsunterlagen:

Skript, ev. Technische Mechanik 2: Gross, Hauger, Schnell Formeln und Aufgaben zur Technischen Mechanik 2: Gross, Schnell, Ehlers, Wriggers

Bemerkungen:

-